Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods
نویسندگان
چکیده
Radiative transfer models predicting the bidirectional reflectance factor (BRF) of leaf canopies are powerful tools that relate biophysical parameters such as leaf area index (LAI), fractional vegetation cover fV and the fraction of photosynthetically active radiation absorbed by the green parts of the vegetation canopy (fAPAR) to remotely sensed reflectance data. One of the most successful approaches to biophysical parameter estimation is the inversion of detailed radiative transfer models through the construction of Look-Up Tables (LUTs). The solution of the inverse problem requires additional information on canopy structure, soil background and leaf properties, and the relationships between these parameters and the measured reflectance data are often nonlinear. The commonly used approach for optimization of a solution is based on minimization of the least squares estimate between model and observations (referred to as cost function or distance; here we will also use the terms “statistical distance” or “divergence” or “metric”, which are common in the statistical literature). This paper investigates how least-squares minimization and alternative distances affect the solution to the inverse problem. The paper provides a comprehensive list of different cost functions from the statistical literature, which can be divided into three major classes: information measures, M-estimates and minimum contrast methods. We found that, for the conditions investigated, Least Square Estimation (LSE) is not an optimal statistical distance for the estimation of biophysical parameters. Our results indicate that other statistical distances, such as the two power measures, Hellinger, Pearson chi-squared measure, Arimoto and Koenker–Basset distances result in better estimates of biophysical parameters than LSE; in some cases the parameter estimation was improved by 15%. Remote Sens. 2013, 5 1356
منابع مشابه
Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملESTIMATORS BASED ON FUZZY RANDOM VARIABLES AND THEIR MATHEMATICAL PROPERTIES
In statistical inference, the point estimation problem is very crucial and has a wide range of applications. When, we deal with some concepts such as random variables, the parameters of interest and estimates may be reported/observed as imprecise. Therefore, the theory of fuzzy sets plays an important role in formulating such situations. In this paper, we rst recall the crisp uniformly minimum ...
متن کاملMultivariate geostatistical estimation using minimum spatial cross-correlation factors (Case study: Cubuk Andesite quarry, Ankara, Turkey)
The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are required to determine the exploitable blocks and their sequence of extraction. However, the number of samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at unknown locations. Cokriging has been traditionally used in the estimation of spa...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013